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All the flows of an incompressible fluid, for which the vorticity of the velocity field is linear with respect to the spatial variables, 
are described. © 1999 Elsevier Science Ltd. All rights reserved. 

The condition for the fluid velocity field to be potential field is often used to classify flows in hydro- 
dynamics. However, an arbitrary potential flow of an incompressible fluid is harmonic and is therefore 
independent of the viscosity. The problem arises of describing classes of flows which generalize potential 
flows and flows having a non-zero vorticity. This problem is considered below subject to the condition 
that the vorticity depends linearly on the spatial coordinates. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

We will find all the particular solutions of the equations of motion of an incompressible fluid 

u, + (u • V ) u - v A u  + Vp = 0, divu = 0 

which satisfy the additional condition, or differential relation, ( ro tu)a  b = 0, that is 

(1.1) 

mtu = H(Ox + k(O (1.2) 

In formulae (1.1) and (1.2) and everywhere subsequently, [] = {ua(t, x)} is the fluid velocity field, 
p = p(t, x) is the pressure, x = {Xa}, at = a/at, aa = a/axa, v = {a.}, a = v v is the Laplacian, 
H = {/-Pb(t)} is a certain 3 x 3 matrix-function and k = {k~(t)}. The fluid density is assumed to be 
unity. The coefficient of kinematic viscosity v is zero in the case of an ideal fluid and is now zero in 
the case of a viscous fluid. The indices a and b vary from 1 to 3. Summation over repeated indices is 
implied. The subscripts on the functions denote differentiation with respect to the corresponding 
variables. 

The problem can be reformulated in hydrodynamic terms as follows: it is required to describe all the 
flows of an incompressible fluid for which the vorticity of the velocity field is linear with respect to the 
spatial variables. This class of flows include flows with a velocity which is linear or quadratic with respect 
to x as subclasses. When H = 0 and k = 0, Eq. (1.2) degenerates into the condition for the field [] to 
be a potential field. On integrating Eq. (1.2), we obtain the local representation for its solution 

u = V q ~ +  H x ) x x + ~ k x x  (1.3) 

where q~ = q~(t, x) is an arbitrary differentiable function. 
Representation (1.3) enables one to give a further formulation of this problem: it is required to 

construct all solutions of Eqs. (1.1) for which the velocity field is a linear superposition of a potential 
field and a field which is quadratic with respect to the spatial variables. 

Remark 1. It is well known [1-5]~ that the maximum algebra in the Lie sense of the invariance of system (1.1) 
is the algebra 

Or, 4d,, D', D*, R(m), z ~ )  (1.4) 

tPrikl. Mat. Mekh. Vol. 63, No. 3, pp. 383-389, 1999. 
:l:See also the earlier paper: Yu. A. DANILOV, Group properties of Maxweil's and the Navier-Stokes equations, Preprint, 

I. V. Kurchatov Inst. Atomic Energy, Academy of Sciences of the USSR, Moscow, 1967. 
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if v = 0 or the algebra 
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(at, Jab,/~ + ~/~, R(m), ZOO) (1.5) 

if v ~ O. The following notation is used in formulae (1.4) and (1.5) 

a t = alat, Jab = xaah - xl~a + uaa/aub - uba/~ua (a < b) 

= tat- u*~: - ~/~, o~ = Xago + u*a/au ° + ~4~p 

R(m) = ma(t)aa + In ~(t)~laua- m ~(t)Xa~la p (1.6) 

Z(X) = X(t)~)/ap 

where rn a = ma(t) and X = X(t) are arbitrary smooth functions (from C**((t0, tl), R), for example) and, moreover, 
this requirement can be substantially relaxed [6]. 

Remark 2. Operators (1.6) generate the invariant transforms of system (1.1) 

at: u'(t, x) = U(t + g, x), p'(t, x) = p(t + g, x) 

(a shift with respect to the time t) 

Jab: u'(t, x) = Bu(t, B-Ix), p'(t, x) = p(t, B-Ix) 

(spatial rotations; here, B is an arbitrary orthogonal 3 x 3 matrix) 

Dt: u'(t, x) = etu(eet, x), p'(t, x) = e~p(eet, x) 

(scaling with respect to the time t) 

DX: u'(t, x) -- e"Cu(t, eF'x), p'(t, x) -- e"2zp(t, eu'x) 

(scaling with respect to the spatial variables) 

R(m): u'(t, x) = u(t, x- re(t)) + mr(t) 

p ' ( t , x ) = p ( t , x - m ( t ) ) - m # ,  x + l/2m • mtt 

(transfer to an arbitrary translational moving system of coordinates; these transforms include shifts with respect 
to spatial variables and a Galilean transformation) 

ZOO: u'(t, x) = u(t, x), p'(t, x) -- p(t, x) + X(O 

(pressure changes). 
In the case when v ;e 0, system (1.1) is not invariant with respect to scaling in the time or spatial variables but 

admits of a grouping of these transforms which is generated by the operator D ~ + ~/2D x 

u'Ct, x) = e'-u(~t, etx), p'(t, x) = e:~p(g'tt, eex) 

Remark 3. The invariant transforms of system (1.1) are equivalence transforms [3] for a set of equations of the 
form of (1.2) if the functions/_/ab and k a are assumed to be parameters. 

2. P R I N C I P A L  R E S U L T  

The  following t heo rem describes the s tructure of  the set of  solutions of  system (1.1), (1.2). 
Theorem. Any solution of  system (1.1), (1.2), apart  f rom equivalence transforms,  locally belongs to 

one  of  the following families 
1. H;~  0 

a) u I = (~l + 15t)x I +(152 _ l x ) x 2  

u ~ = (15~ + I x ) x l  +(~'  - 15bx2 
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x 3 (2.1) 

P=-2"tg;* (x,) +(~ ) +xs)- ~-(I~, +2~I~I)(x2 - a 2 ) 
• -t I 

-~,= + 2~'135)~:5 + (~ - 2(~')5)x~ - 2vx.3 

where ×, ~., Ix, 131, 132, ~i, ~2, 0 are smooth functions of the variable t for which the relations 

Ix > O, IXIx, = Z,Z.,, k ~ +Ix 

,`, + 2~ ' , `  = 0, O, = 2Z4t-1~ ~ - ,̀  

1~1 = 2 ~ s i n 0 + ~ 2  cose, 132 = ~'t c°sO-~22Ix sinO 

b) u = -Ixy~ e 3 + Fab ybe ̀  + fie ~ (2.2) 

p -~-ix(e, • e')y~ 

are satisfied, whereya  = e ~ • x, the vectors e a form an or thonormal  basis which depends smoothly on t, 
Ix, x~, ×5, ~, 13 are smooth functions of  the variable t which satisfy the relations 

Ix > O' l~ = l't-'(l~'x2 -,̀ '(e~ "e~)- x2(e~ "e2)) (2.3) 

Ix, Ix- ' , , '  - 2~;,,' + 2 , , I  = o, 2 (e~ .  e ' ) , ` '  - 2 ; , `  ~ - , , ,=  = 0 

F and G are smooth 3 x 3 matrix functions of  the variable t which are defined according to the formulae 
(Sab is the Kronecker  delta) 

D e "l 

c-- r, + r .  r + r .  e .  v -  e = J ¢  ":U 

u3 = ~ o ,  - I r = + x,  X3 (2.4) 2 x 

p=-*, +(,`,*~-n,)=ctg~-l~' ] (±x~- r 2 + ~ I * - - - u . u +  
x I \ ~ ) , \ 2  2 

± 
- 2 x  r2x3 + rl× In r + 4 (,`r)2 - 2vx3 + 8 r4 

where ~ = t, r = (x 2 + x2) a/2, co = x 3 - ×arctg(x2/xz), 1] and ~ are smooth functions of  the variable 
t, ,`t×-l: = 0 if × = 0 and the functions ~ = tb(x, r, to) and W = hu(x, r, co) satisfy the system of  
equations 

~ ,  = ~,o, ((×(~))2:2 + 1 ) ,~ ,  = - %  
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2. H =  0, k ~  0 

u = ~y,  e ~ + ~>.~ e 2 + Ikl-2(k. x)k,  + [k1-2 (k , .  x)k - 
(2.5) 

- l j k l - 4 ( k  , • k ) (k .  x ) k - l l k l - 2 ( k ,  . k ) x + 2 k  x x 

' _ l l ~ + ¼ l k × x l 2  ½ p = -q~, - ~ - u .  u + l i~-2(k-x)(k,  × k ,x)  

where  ,r - ey ~ = e i • x, e i = ei(t) (i = 1, 2) are smooth  vector  functions for  which the condit ions 
l eil = 1, e 1 t., = 0, e'. k -- 0 are satisfied and the vectors e 1, e 2 and k form a right triplet 

= • + Jk[ -2 (k , .  x ) (k .  x) - 1 li~-4 (kt .  k)(lk121xl 2 + Ok. x)  2 q~ ) (2.6) 

and the funct ions ~ = ~(x ,  Yl, Y2) and W = W(x, Yx, Y2) satisfy the C a u c h y - R i e m a n n  system Oy 1 = Wy2, 
(~Y2 = --  ltPyl. 

3. H = 0, k = 0 (potent ia l  flows) 

1 
u = Vq), p = -~p, - ~ V(p- Vq) 

where  ~ = q0(t, x) is an arbi t rary harmonic  function. 

Remark 4. All of the non-potential solutions of Eqs (1.1) which have been mentioned in the theorem, are Lie 
solutions, that is, each of them is invariant with respect to a certain subalgebra of the maximum algebra in the Lie 
sense of the invariance of Eqs (1.1). For instance, solutions (2.1), (2.4) and (2.5) are invariant with respect to the 
one-dimensional algebras 

(R(0, 0, exp(-2J~ldt)) -Z(2vXexp(-21~ldt))) 

Ul2 + g(O, O, x) - Z(~t + 2vx)) and (R(k)) 

respectively and solution (2.2) is invariant with respect to the two-dimensional algebra 

(R(m i ) + Z(~I), R(m 2) + Z(~2)) 

where m i = ~ l i e2  -I- a2/e 3, X i = -2p.a ~ (i = 1, 2) a n d  ((~1i, 0~2/) ( i  = 1, 2) are linearly independent solutions of the 
system of ordinary differential equations 

_ -  

The Lie solutions of the Navier-Stokes equations have been investigated earlier [6]. 

3. A U X I L I A R Y  A S S E R T I O N S  

The  following assertions are used in the p roof  of  the theorem.  

L e m m a  1. T h e  action of  an arbitrary l inear opera to r  in the space R 3 can be represen ted  in the form 

Hx = ( m -  x )m - (n . x)n + yx + ! x x (3.1) 

where  y e R, m, n, l e R 3, m • n = 0 and H is the matrix of  the operator .  In represen ta t ion  (3.1), the 
number  y and the vector  I are uniquely defined, and the vectors  m and n are def ined apar t  f rom the 
factor  of  -+ 1. 

Proof. Suppose H r is the transpose of H. If (3.1) is satisfied, then 

(m.x)m-(n-x)n+~/x  =Sx, S:=I (H + H T) 

1=~2(H32_H 23, H I 3 _ H  31, H21 _HI2)T 
(3.2) 
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Since the matrix S is symmetric, it can be reduced to diagonal form by orthogonal transforms, that is, an orthogonal 
matrix O exists such that 

OSO r = diaglTI, ¥2, ¥3}, ¥1 > ¥2-> T3 

Then, the vectors m, n and the number T, which are defined by the formulae 

m = r k o r ( ~ l  -T2,0,0) T, n = + o T ( o , o , ~ )  T, "~ = "~2 

(and only these) satisfy the requirement of the lemma. 

L e m m a  2. I f H  ab ~ Cl((to, tl), R),  then i ~ Cl((t0, tz) R 3) in L e m m a  1, and m a, n a, Tare  cont inuously  
differentiable functions in the set of  those values o f  t for  which re(t) ~ 0 and n(t) ~ 0. 

Proof. The assertion of the lemma regarding the vector-function I is obvious by virtue of  the second relation of 
(3.2) and, in the case of the functions m a, n a and T, it is a consequence of the implicit function theorem. Actually, 
these functions satisfy the equations 

man a = 0, (mb) 2 - (nb)  2 +T = Hbb 
(3.3) 

raam h - n a n  b = 2  (H ab + Hba), a < b 

(Summation over the index b is not carried out here). The determinant of the derivatives of the left-hand sides of 
Eqs (3.3) with respect to rn a, n ° and V has the form --4( ] m ] 2 + [ n [ 2) [ m x n [ 2 and is therefore non-zero when 
m x n ~ 0. By virtue of the orthogonality of the vectors m and n, it is sufficient for this that m ~ 0 and n ~ 0. 

4. P R O O F  O F  T H E  T H E O R E M  

We shall use the representa t ion  o f  the m a t r i x H  in the fo rm o f  (3.1). The  relations m .  m = n • n and 
T = 0 are a necessary condi t ion for  the compatibil i ty o f  equat ions (1.1) and (1.2). 

We now consider  the possible cases. 
A. m # 0, n # 0. Then  ! = ~m x n, where  a = t~(t). We int roduce the notat ion 

It: = m • m = n • n,  zl: = m • x, z2: = n • x, z3: = (m × n , x )  

F rom the overde te rmined  system, which is obtained by substituting (1.3) into Eqs  (1.1), we find the 
following expression for  the funct ion tp 

1 _ l i x _ 2 m "  __~g(Z21 + Z2)Z , + I IX  3(I , ,m x n)z,z 2 -(IX-air . m -  ,~ k)z2z3 

where  ~1, ~2, ~a, 110 are smooth  functions o f  the variable t. 
• I f  t~ = ± 1, then m x n = Ixe, ! = ~ ,  where  e = const, I e I = 1, ~,: = oix and, therefore,  ~. ~: Ix, Ixgt = 

~ t -  By virtue o f  R e m a r k  3, it can be assumed that the relations 

e = (0, 0, 1 ) , m  . k = n -  k = 0,113 = 0 

are additionally satisfied. 
Then,  k = ×e, 111 = 112 = 0 and 

where 0 and × are smooth  functions o f  the variable t for  which 

O, = 2 ~ - J ~  2 - x ,  ~ ,  + 2 ~ l x  = 0 

On making all o f  the substi tutions and integrating Eq. (1.1) with respect  to the function p,  we obtain 
solution (2.1). 
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Since, according to Lemma 1, the vectors m and n are determined, apart from the factor - 1 ,  then, 
in the case when o = + 1, we may put o = -1. The equivalence transforms enable one to satisfy the 
following further conditions 

m • k = n - k ,  rl ! = r12, rl 3 = 0  

If the notation 

~ 1 1 1 , ~ ,  el m + n  e2 m - n  e3 :---- 2 - ~ '  :----~' := --].tl~ X n 

is introduced, then, in a similar manner  to the preceding case, we obtain the solution (2.2). 
B. m = n = 0, l ~ 0. In this case It = 0, that is ! = const. Using rotations and scale transforms, we 

reduce I to the vector (0, 0, 1). By virtue of Remark 3, it can also be assumed that I .  k = 0 and therefore 
k = (0, 0, ×(t)) r. We now integrate the overdetermined system, obtained by substituting (1.3) into (1.1), 
with respect to the function q~. We obtain 

~,(t) k2 x I 

The variables x, r and to are determined as in (2.4) and the function ~ satisfies the equation 

q~rr + l--~r + +1 ~ = 0  
r 

On substituting the expression for 9 into (1.3) and integrating the first equation of (1.1) with respect 
to the function p, we obtain the solution (2.4). 

C. H = 0, k e 0. In this case, the expression for the function g~ is reduced by means of equivalence 
transforms to expression (2.6). Consequently, the corresponding solution of Eqs (1.1) has the form (2.5). 

D. The case when H = 0, k = 0 is obvious. 
The proof  of the theorem has been completed. 
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